Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.412
Filtrar
1.
Nano Lett ; 24(5): 1494-1501, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38264980

RESUMO

The rapid progress in nanopore sensing has sparked interest in protein sequencing. Despite recent notable advancements in amino acid recognition using nanopores, chemical modifications usually employed in this process still need further refinements. One of the challenges is to enhance the chemical specificity to avoid downstream misidentification of amino acids. By employing adamantane to label proteinogenic amino acids, we developed an approach to fingerprint individual amino acids using the wild-type α-hemolysin nanopore. The unique structure of adamantane-labeled amino acids (ALAAs) improved the spatial resolution, resulting in distinctive current signals. Various nanopore parameters were explored using a machine-learning algorithm and achieved a validation accuracy of 81.3% for distinguishing nine selected amino acids. Our results not only advance the effort in single-molecule protein characterization using nanopores but also offer a potential platform for studying intrinsic and variant structures of individual molecules.


Assuntos
Proteínas Hemolisinas , Nanoporos , Proteínas Hemolisinas/química , Aminoácidos/química , Sequência de Aminoácidos , Algoritmos
2.
J Agric Food Chem ; 72(2): 1321-1329, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175929

RESUMO

Bacillus thuringiensis Cry9 proteins show high insecticidal activity against different lepidopteran pests. Cry9 could be a valuable alternative to Cry1 proteins because it showed a synergistic effect with no cross-resistance. However, the pore-formation region of the Cry9 proteins is still unclear. In this study, nine mutations of certain Cry9Aa helices α3 and α4 residues resulted in a complete loss of insecticidal activity against the rice pest Chilo suppressalis; however, the protein stability and receptor binding ability of these mutants were not affected. Among these mutants, Cry9Aa-D121R, Cry9Aa-D125R, Cry9Aa-D163R, Cry9Aa-E165R, and Cry9Aa-D167R are unable to form oligomers in vitro, while the oligomers formed by Cry9Aa-R156D, Cry9Aa-R158D, and Cry9Aa-R160D are unstable and failed to insert into the membrane. These data confirmed that helices α3 and α4 of Cry9Aa are involved in oligomerization, membrane insertion, and toxicity. The knowledge of Cry9 pore-forming action may promote its application as an alternative to Cry1 insecticidal proteins.


Assuntos
Bacillus thuringiensis , Inseticidas , Animais , Bacillus thuringiensis/química , Inseticidas/química , Endotoxinas/genética , Endotoxinas/toxicidade , Endotoxinas/química , Domínios Proteicos , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/toxicidade , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Proteínas Hemolisinas/química , Larva/metabolismo
3.
Nano Lett ; 24(2): 681-687, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38185873

RESUMO

Despite the importance of the enantioselective transport of amino acids through transmembrane protein nanopores from fundamental and practical perspectives, little has been explored to date. Here, we study the transport of amino acids through α-hemolysin (αHL) protein pores incorporated into a free-standing lipid membrane. By measuring the transport of 13 different amino acids through the αHL pores, we discover that the molecular size of the amino acids and their capability to form hydrogen bonds with the pore surface determine the chiral selectivity. Molecular dynamics simulations corroborate our findings by revealing the enantioselective molecular-level interactions between the amino acid enantiomers and the αHL pore. Our work is the first to present the determinants for chiral selectivity using αHL protein as a molecular filter.


Assuntos
Aminoácidos , Nanoporos , Proteínas Hemolisinas/química , Simulação de Dinâmica Molecular , Lipídeos
4.
Int J Biol Macromol ; 254(Pt 3): 127985, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949263

RESUMO

The 20-kDa accessory protein (P20) from Bacillus thuringiensis subsp. israelensis (Bti) has been identified as an essential molecular chaperone in the enhancement of Cry11Aa and Cyt1Aa toxins production and their bio-crystallization. Additionally, P20 plays a vital role in suppressing the toxic effect of Cyt toxin on the host bacterium and also enhances insecticidal activity of Cry1Ac protein. Thus, the function of P20 is more specific than that of the chaperones. However, P20 is poorly investigated and insufficiently characterized. In the present study, we recombinantly expressed p20 from local isolate Bti ISPC-12 in heterologous bacterium E. coli and P20 protein was purified to homogeneity. Detailed biochemical and biophysical characterization provides crucial insights about in-vitro behavior as well as spatial conformations of P20 protein. Further, structural modelling and analysis provides insights into three-dimensional organization of the protein and shows that P20 is a non-toxic member of cytolytic (Cyt) toxin family similar to Cyt1Ca, with presence of conserved cytolysin fold. Additionally, solution scattering reveals that P20 is present as a dimer in the solution and probable dimeric assembly of P20 is presented. The findings reported here reveal engaging facts about P20 thereby advancing our understanding about this protein, which will expedite future studies.


Assuntos
Bacillus thuringiensis , Bacillus thuringiensis/química , Endotoxinas/química , Toxinas de Bacillus thuringiensis/metabolismo , Escherichia coli/metabolismo , Proteínas de Bactérias/química , Proteínas Hemolisinas/química , Chaperonas Moleculares/metabolismo
5.
Nat Methods ; 21(1): 102-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957431

RESUMO

Direct protein sequencing technologies with improved sensitivity and throughput are still needed. Here, we propose an alternative method for peptide sequencing based on enzymatic cleavage and host-guest interaction-assisted nanopore sensing. We serendipitously discovered that the identity of any proteinogenic amino acid in a particular position of a phenylalanine-containing peptide could be determined via current blockage during translocation of the peptide through α-hemolysin nanopores in the presence of cucurbit[7]uril. Building upon this, we further present a proof-of-concept demonstration of peptide sequencing by sequentially cleaving off amino acids from C terminus of a peptide with carboxypeptidases, and then determining their identities and sequence with a peptide probe in nanopore. With future optimization, our results point to a different way of nanopore-based protein sequencing.


Assuntos
Nanoporos , Peptídeos , Sequência de Aminoácidos , Proteínas Hemolisinas/química
6.
Biochimie ; 216: 3-13, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37820991

RESUMO

Alpha hemolysin (HlyA) is a hemolytic and cytotoxic protein secreted by uropathogenic strains of E. coli. The role of glycophorins (GPs) as putative receptors for HlyA binding to red blood cells (RBCs) has been debated. Experiments using anti-GPA/GPB antibodies and a GPA-specific epitope nanobody to block HlyA-GP binding on hRBCs, showed no effect on hemolytic activity. Similarly, the hemolysis induced by HlyA remained unaffected when hRBCs from a GPAnull/GPBnull variant were used. Surface Plasmon Resonance experiments revealed similar values of the dissociation constant between GPA and either HlyA, ProHlyA (inactive protoxin), HlyAΔ914-936 (mutant of HlyA lacking the binding domain to GPA) or human serum albumin, indicating that the binding between the proteins and GPA is not specific. Although far Western blot followed by mass spectroscopy analyses suggested that HlyA interacts with Band 3 and spectrins, hemolytic experiments on spectrin-depleted hRBCs and spherocytes, indicated these proteins do not mediate the hemolytic process. Our results unequivocally demonstrate that neither glycophorins, nor Band 3 and spectrins mediate the cytotoxic activity of HlyA on hRBCs, thereby challenging the HlyA-receptor hypothesis. This finding holds significant relevance for the design of anti-toxin therapeutic strategies, particularly in light of the growing antibiotic resistance exhibited by bacteria.


Assuntos
Proteínas de Escherichia coli , Toxinas Biológicas , Humanos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas de Membrana/metabolismo , Glicoforinas/metabolismo , Glicoforinas/farmacologia , Hemólise , Eritrócitos/metabolismo , Toxinas Biológicas/metabolismo
7.
J Am Chem Soc ; 145(34): 18812-18824, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37527445

RESUMO

Glycan is a crucial class of biological macromolecules with important biological functions. Functional groups determine the chemical properties of glycans, which further affect their biological activities. However, the structural complexity of glycans has set a technical hurdle for their direct identification. Nanopores have emerged as highly sensitive biosensors that are capable of detecting and characterizing various analytes. Here, we identified the functional groups on glycans with a designed α-hemolysin nanopore containing arginine mutations (M113R), which is specifically sensitive to glycans with acetamido and carboxyl groups. Molecular dynamics simulations indicated that the acetamido and carboxyl groups of the glycans produce unique electrical signatures by forming polar and electrostatic interactions with the M113R nanopores. Using these electrical features as the fingerprints, we mapped the length of the glycans containing acetamido and carboxyl groups at the monosaccharide, disaccharide, and trisaccharide levels. This proof-of-concept study provides a promising foundation for developing single-molecule glycan fingerprinting libraries and demonstrates the capability of biological nanopores in glycan sequencing.


Assuntos
Proteínas Hemolisinas , Nanoporos , Proteínas Hemolisinas/química , Simulação de Dinâmica Molecular
8.
Microb Ecol ; 86(4): 2515-2526, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37392204

RESUMO

Bacillus thuringiensis is a Gram-positive aerobic bacterium and the most used biopesticide worldwide. Given the importance of B. thuringiensis strain characterization for the development of new bioinsecticides or transgenic events and the identification and classification of new B. thuringiensis genes and strains to understand its distribution and diversity, this work is aimed at creating a gene identification system based on qPCR reactions utilizing core B. thuringiensis genes cry1, cry2, cry3, cry4, cry5, app6, cry7, cry8, cry9, cry10, cry11, vpb1, vpa2, vip3, cyt1, and cyt2 for the characterization of 257 strains of B. thuringiensis. This system was based on the Invertebrate Bacteria Collection from Embrapa Genetic Resources and Biotechnology and analyzed (a) the degree of correlation between the distribution of these strains and the origin of the substrate from which the strain was isolated and (b) between its distribution and geoclimatic conditions. This study made it possible to observe that the cry1, cry2, and vip3A/B genes occur homogeneously in the Brazilian territory, and some genes are found in specific regions. The biggest reservoir of variability is within B. thuringiensis strains in each region, and it is suggested that both geoclimatic conditions and regional crops interfere with the genetic diversity of the B. thuringiensis strains present in the region, and B. thuringiensis strains can constantly exchange genetic information.


Assuntos
Bacillus thuringiensis , Animais , Bacillus thuringiensis/genética , Endotoxinas/genética , Endotoxinas/química , Reação em Cadeia da Polimerase em Tempo Real , Toxinas de Bacillus thuringiensis , Brasil , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Insetos , Variação Genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química
9.
Int J Biol Macromol ; 246: 125608, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392914

RESUMO

α-Hemolysin (Hla) is a potent pore-forming toxin (PFT) produced by Staphylococcus aureus that exacerbates the pathogenesis of S. aureus enterotoxicity and plays a role in population food poisoning. Hla lyses cells by binding to host cell membranes and oligomerizing to form heptameric structures, thereby disrupting the cell barrier. Although the broad bactericidal effect of electron beam irradiation (EBI) has been demonstrated whether it has a damaging or degrading effect on Hla's remains unknown. In this study, EBI was found to have the effect of altering the secondary structure of Hla proteins, verifying that the damaging effect of EBI-treated Hla on intestinal and skin epithelial cell barriers was significantly reduced. It was noted by hemolysis and protein interactions that EBI treatment significantly disrupted the binding of Hla to its high-affinity receptor, but did not affect the binding between Hla monomers to form heptamers. Thus, EBI can effectively reduce the threat of Hla to food safety.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Proteínas Hemolisinas/química , Elétrons , Células Epiteliais/metabolismo , Infecções Estafilocócicas/metabolismo
10.
J Mol Recognit ; 36(9): e3047, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474122

RESUMO

Cry11Aa and Cyt1Aa are two pesticidal toxins produced by Bacillus thuringiensis subsp. israelensis. To improve our understanding of the nature of their oligomers in the toxic actions and synergistic effects, we performed the atomic force microscopy to probe the surfaces of their natively grown crystals, and used the L-weight filter to enhance the structural features. By L-weight filtering, molecular sizes of the Cry11Aa and Cyt1Aa monomers obtained are in excellent agreement with the three-dimensional structures determined by x-ray crystallography. Moreover, our results show that the layered feature of a structural element distinguishes the topographic characteristics of Cry11Aa and Cyt1Aa crystals, suggesting that the Cry11Aa toxin has a better chance than Cyt1Aa for multimerization and therefore cooperativeness of the toxic actions.


Assuntos
Bacillus thuringiensis , Endotoxinas , Endotoxinas/química , Endotoxinas/toxicidade , Toxinas de Bacillus thuringiensis , Proteínas Hemolisinas/química , Proteínas Hemolisinas/toxicidade , Proteínas de Bactérias/química , Bacillus thuringiensis/química
11.
Anal Chem ; 95(26): 9805-9812, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37279035

RESUMO

This paper describes a method for the real-time counting and extraction of DNA molecules at the single-molecule level by nanopore technology. As a powerful tool for electrochemical single-molecule detection, nanopore technology eliminates the need for labeling or partitioning sample solutions at the femtoliter level. Here, we attempt to develop a DNA filtering system utilizing an α-hemolysin (αHL) nanopore. This system comprises two droplets, one filling with and one emptying DNA molecules, separated by a planar lipid bilayer containing αHL nanopores. The translocation of DNA through the nanopores is observed by measuring the channel current, and the number of translocated molecules can also be verified by quantitative polymerase chain reaction (qPCR). However, we found that the issue of contamination seems to be an almost insolvable problem in single-molecule counting. To tackle this problem, we tried to optimize the experimental environment, reduce the volume of solution containing the target molecule, and use the PCR clamp method. Although further efforts are still needed to achieve a single-molecule filter with electrical counting, our proposed method shows a linear relationship between the electrical counting and qPCR estimation of the number of DNA molecules.


Assuntos
Nanoporos , DNA/química , Nanotecnologia/métodos , Proteínas Hemolisinas/química , Bicamadas Lipídicas/química
12.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37279443

RESUMO

Bacillus thuringiensis (Bt) proteins are an environmentally safe and effective alternative to chemical pesticides and have been used as biopesticides, with great commercial success, for over 50 years. Global agricultural production is predicted to require a 70% increase until 2050 to provide for an increasing population. In addition to agriculture, Bt proteins are utilized to control human vectors of disease-namely mosquitoes-which account for >700 000 deaths annually. The evolution of resistance to Bt pesticial toxins threatens the progression of sustainable agriculture. Whilst Bt protein toxins are heavily utilized, the exact mechanisms behind receptor binding and toxicity are unknown. It is critical to gain a better understanding of these mechanisms in order to engineer novel toxin variants and to predict, and prevent, future resistance evolution. This review focuses on the role of carbohydrate binding in the toxicity of the most utilized group of Bt pesticidal proteins-three domain Cry (3D-Cry) toxins.


Assuntos
Bacillus thuringiensis , Inseticidas , Animais , Humanos , Inseticidas/metabolismo , Endotoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidade , Mosquitos Vetores , Toxinas de Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Glicoconjugados
13.
J Biol Chem ; 299(8): 104940, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343702

RESUMO

Ostreolysin A6 (OlyA6) is an oyster mushroom-derived membrane-binding protein that, upon recruitment of its partner protein, pleurotolysin B, forms a cytolytic membrane pore complex. OlyA6 itself is not cytolytic but has been reported to exhibit pro-apoptotic activities in cell culture. Here we report the formation dynamics and the structure of OlyA6 assembly on a lipid membrane containing an OlyA6 high-affinity receptor, ceramide phosphoethanolamine, and cholesterol. High-speed atomic force microscopy revealed the reorganization of OlyA6 dimers from initial random surface coverage to 2D protein crystals composed of hexameric OlyA6 repeat units. Crystal growth took place predominantly in the longitudinal direction by the association of OlyA6 dimers, forming a hexameric unit cell. Molecular-level examination of the OlyA6 crystal elucidated the arrangement of dimers within the unit cell and the structure of the dimer that recruits pleurotolysin B for pore formation.


Assuntos
Proteínas Fúngicas , Proteínas Hemolisinas , Modelos Moleculares , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestrutura , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/ultraestrutura , Proteínas de Membrana , Cristalização , Microscopia de Força Atômica , Multimerização Proteica , Estrutura Terciária de Proteína
14.
Small ; 19(37): e2206232, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37170734

RESUMO

Oligomerization of antimicrobial peptides (AMPs) is critical in their effects on pathogens. LL-37 and its truncated fragments are widely investigated regarding their structures, antimicrobial activities, and application, such as developing new antibiotics. Due to the small size and weak intermolecular interactions of LL-37 fragments, it is still elusive to establish the relationship between oligomeric states and antimicrobial activities. Here, an α-hemolysin nanopore, mass spectrometry (MS), and molecular dynamic (MD) simulations are used to characterize the oligomeric states of two LL-37 fragments. Nanopore studies provide evidence of trapping events related to the oligomer formation and provide further details on their stabilities, which are confirmed by MS and MD simulations. Furthermore, simulation results reveal the molecular basis of oligomer dynamics and states of LL-37 fragments. This work provides unique insights into the relationship between the oligomer dynamics of AMPs and their antimicrobial activities at the single-molecule level. The study demonstrates how integrating methods allows deciphering single molecule level understanding from nanopore sensing approaches.


Assuntos
Anti-Infecciosos , Nanoporos , Proteínas Hemolisinas/química , Simulação de Dinâmica Molecular
15.
Int J Biol Macromol ; 242(Pt 4): 124979, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245748

RESUMO

Cry11Aa is the most potent mosquito larvicidal protein of Bacillus thuringiensis subsp. israelensis (Bti). Development of resistance against insecticidal proteins including Cry11Aa is known but no field resistance was observed with Bti. The phenomenon of increasing resistance in insect pests necessitates the development of new strategies and techniques to enhance efficacy of insecticidal proteins. Recombinant technology offers better control over the molecule and allows modification of protein to achieve maximal effect against target pests. In this study, we standardised protocol for recombinant purification of Cry11Aa. Recombinant Cry11Aa found active against larvae of Aedes and Culex mosquito species and LC50 were estimated. Detailed biophysical characterization provides crucial insights into stability and in-vitro behaviour of the recombinant Cry11Aa. Moreover, trypsin hydrolysis doesn't improve overall toxicity of recombinant Cry11Aa. Proteolytic processing suggests domain I and II are more prone to proteolysis in comparison to domain III. Significance of structural features for proteolysis of Cry11Aa was observed after performing molecular dynamics simulations. Findings reported here are contributing significantly in method for purification, understanding in-vitro behaviour and proteolytic processing of Cry11Aa which could facilitate in efficient utilisation of Bti for insect pests and vectors control.


Assuntos
Aedes , Bacillus thuringiensis , Inseticidas , Animais , Bacillus thuringiensis/química , Endotoxinas/química , Proteólise , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/química , Mosquitos Vetores , Inseticidas/farmacologia , Inseticidas/metabolismo , Larva/metabolismo , Aedes/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/química
16.
Biochemistry ; 62(12): 1994-2011, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37224476

RESUMO

Alpha hemolysin of Escherichia coli (HlyA) is a pore-forming protein, which is a prototype of the "Repeat in Toxins" (RTX) family. It was demonstrated that HlyA-cholesterol interaction facilitates the insertion of the toxin into membranes. Putative cholesterol-binding sites, called cholesterol recognition/amino acid consensus (CRAC), and CARC (analogous to CRAC but with the opposite orientation) were identified in the HlyA sequence. In this context, two peptides were synthesized, one derived from a CARC site from the insertion domain of the toxin (residues 341-353) (PEP 1) and the other one from a CRAC site from the domain between the acylated lysines (residues 639-644) (PEP 2), to study their role in the interaction of HlyA with membranes. The interaction of peptides with membranes of different lipid compositions (pure POPC and POPC/Cho of 4:1 and 2:1 molar ratios) was analyzed by surface plasmon resonance and molecular dynamics simulations. Results demonstrate that both peptides interact preferentially with Cho-containing membranes, although PEP 2 presents a lower KD than PEP 1. Molecular dynamics simulation results indicate that the insertion and interaction of PEP 2 with Cho-containing membranes are more prominent than those caused by PEP 1. The hemolytic activity of HlyA in the presence of peptides indicates that PEP 2 was the only one that inhibits HlyA activity, interfering in the binding between the toxin and cholesterol.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas Hemolisinas/química , Peptídeos/metabolismo , Colesterol/metabolismo
17.
Structure ; 31(6): 651-667.e5, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37019111

RESUMO

γ-Hemolysin (γ-HL) is a hemolytic and leukotoxic bicomponent ß-pore-forming toxin (ß-PFT), a potent virulence factor from the Staphylococcus aureus Newman strain. In this study, we performed single-particle cryoelectron microscopy (cryo-EM) of γ-HL in a lipid environment. We observed clustering and square lattice packing of octameric HlgAB pores on the membrane bilayer and an octahedral superassembly of octameric pore complexes that we resolved at resolution of 3.5 Å. Our atomic model further demonstrated the key residues involved in hydrophobic zipping between the rim domains of adjacent octameric complexes, providing additional structural stability in PFTs post oligomerization. We also observed extra densities at the octahedral and octameric interfaces, providing insights into the plausible lipid-binding residues involved for HlgA and HlgB components. Furthermore, the hitherto elusive N-terminal region of HlgA was also resolved in our cryo-EM map, and an overall mechanism of pore formation for bicomponent ß-PFTs is proposed.


Assuntos
Toxinas Bacterianas , Staphylococcus aureus Resistente à Meticilina , Proteínas Hemolisinas/química , Staphylococcus aureus , Microscopia Crioeletrônica , Toxinas Bacterianas/química , Lipídeos
18.
BMC Microbiol ; 23(1): 100, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055727

RESUMO

Mosquitoes of many species are key disease vectors, killing millions of people each year. Bacillus thuringiensis-based insecticide formulations are largely recognized as among the most effective, ecologically safe, and long-lasting methods of managing insect pests. New B. thuringiensis strains with high mosquito control effectiveness were isolated, identified, genetically defined, and physiologically characterized. Eight B. thuringiensis strains were identified and shown to carry endotoxin-producing genes. Using a scanning electron microscope, results revealed typical crystal forms of various shapes in B. thuringiensis strains. Fourteen cry and cyt genes were found in the strains examined. Although the genome of the B. thuringiensis A4 strain had twelve cry and cyt genes, not all of them were expressed, and only a few protein profiles were observed. The larvicidal activity of the eight B. thuringiensis strains was found to be positive (LC50: 1.4-28.5 g/ml and LC95: 15.3-130.3 g/ml). Bioassays in a laboratory environment demonstrated that preparations containing B. thuringiensis spores and crystals were particularly active to mosquito larvae and adults. These new findings show that the novel preparation containing B. thuringiensis A4 spores and crystals mixture might be used to control larval and adult mosquitoes in a sustainable and ecologically friendly manner.


Assuntos
Bacillus thuringiensis , Culex , Inseticidas , Humanos , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Bacillus thuringiensis/genética , Culex/metabolismo , Larva/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Mosquitos Vetores , Endotoxinas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/química
19.
Molecules ; 28(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110815

RESUMO

Hemolysin II (HlyII) is one of the virulence factors of the opportunistic bacterium Bacillus cereus belonging to the group of ß-pore-forming toxins. This work created a genetic construct encoding a large C-terminal fragment of the toxin (HlyIILCTD, M225-I412 according to the numbering of amino acid residues in HlyII). A soluble form of HlyIILCTD was obtained using the SlyD chaperone protein. HlyIILCTD was first shown to be capable of agglutinating rabbit erythrocytes. Monoclonal antibodies against HlyIILCTD were obtained by hybridoma technology. We also proposed a mode of rabbit erythrocyte agglutination by HlyIILCTD and selected three anti-HlyIILCTD monoclonal antibodies that inhibited the agglutination.


Assuntos
Bacillus cereus , Proteínas Hemolisinas , Animais , Coelhos , Bacillus cereus/metabolismo , Proteínas Hemolisinas/química , Proteínas de Bactérias/química , Eritrócitos/metabolismo , Anticorpos Monoclonais/metabolismo
20.
Environ Sci Technol ; 57(14): 5693-5702, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36989144

RESUMO

The environmental fate of insecticidal Cry proteins, including time-dependent conservation of biological properties, results from their structural stability in soils. The complex cascade of reactions involved in biological action requires Cry proteins to be in solution. However, the pH-dependent changes in conformational stability and the adsorption-desorption mechanisms of Cry protein on soil minerals remain unclear. We used Derjaguin-Landau-Verwey-Overbeek (DLVO) calculation and differential scanning calorimetry to interpret the driving forces and structural stabilities of Cry1Ac and two contrasting model proteins adsorbed by montmorillonite. The structural stability of Cry1Ac is closer to that of the "hard" protein, α-chymotrypsin, than that of the "soft" bovine serum albumin (BSA). The pH-dependent adsorption of Cry1Ac and α-chymotrypsin could be explained by DLVO theory, whereas the BSA adsorption deviated from it. Patch-controlled electrostatic attraction, hydrophobic effects, and entropy changes following protein unfolding on a mineral surface could contribute to Cry1Ac adsorption. Cry1Ac, like chymotrypsin, was partly denatured on montmorillonite, and its structural stability decreased with an increase in pH. Moreover, small changes in the conformational heterogeneity of both Cry1Ac and chymotrypsin were observed following adsorption. Conversely, adsorbed BSA was completely denatured regardless of the solution pH. The moderate conformational rearrangement of adsorbed Cry1Ac may partially explain why the insecticidal activity of Bt toxin appears to be conserved in soils, albeit for a relatively short time period.


Assuntos
Toxinas de Bacillus thuringiensis , Inseticidas , Quimotripsina , Bentonita , Endotoxinas/química , Endotoxinas/metabolismo , Proteínas de Bactérias , Adsorção , Minerais , Solo/química , Concentração de Íons de Hidrogênio , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...